skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taneja, Sagarika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanomaterials that respond to intracellular signals, such as pH, have potential for many biomedical applications, such as drug delivery, because the assembly/disassembly process can be tailored to respond to a stimulus characteristic of a specific subcellular location. In this work, two rhodamine-peptides that form stable nanotubes at physiological pH but dissociate into highly fluorescent monomers within the acidified interior of endosomal/lysosomal cellular compartments has been developed. The rhodamine dipeptide conjugates, NH2-KK(RhB)-NH2 (RhB-KK) and NH2-EK(RhB)-NH2 (RhB-KE) with rhodamine B chromophores appended at the ε-amino position of a lysine residue, were shown to assemble into well-defined nanotubes at pH values above ~4-5 and to dissociate into a fluorescent monomer state at lower pH values. The pH-dependence of the assembly process was investigated using CD and fluorescence spectroscopy along with TEM, AFM and confocal imaging. Although the ring opening/closing transition of the rhodamine chromophore took place at pH 4.1 for both peptides, the onset of assembly began at pH 4.6 for RhB-KE and at a comparatively more basic pH (5.8) for RhB-KK. Accordingly, the rhodamine-peptides interconverted between three, pH-dependent states: an open-ring, monomeric state (max 580 nm, 𝜆ex 550 nm) at pH values at or below ~4.6; a closed-ring, nanotube form that exhibits AIEE (max 460 nm, 𝜆ex = 330 nm) at higher pH values and a closed-ring, non-emissive monomeric state that emerged below the CMC. The pH-responsive features of the peptides were evaluated by live-cell imaging in three cancer cell lines using confocal laser scanning microscopy (CLSM). Visualizing the cells after incubation with either RhB-KE or RhB-KK produced CLSM images with a punctate appearance in the Texas Red channel that colocalized with the lysosomes. These experiments indicating that the nanotubes were rapidly trafficked into the acidic lysosomal compartments within the cells, which induced dissociation into a monomeric, open state. Uptake inhibition studies suggested that cellular uptake was mediated by either or both caveolae- and clathrin-mediated endocytosis, depending on the cell line studied. 
    more » « less
  2. Diabetes is a major risk factor for Alzheimer’s disease (AD). Amino acid compound 2 (AAC2) improves glycemic and cognitive functions in diabetic mouse models through mechanisms distinct from insulin. Our goal was to compare the effects of AAC2, insulin, and their nanofiber-forming combination on early asymptomatic AD pathogenesis in APP/PS1 mice. Insulin, but not AAC2 or the combination treatment (administered intraperitoneally every 48 h for 120 days), increased seizure-related mortality, altered the brain fat-to-lean mass ratio, and improved specific cognitive functions in APP/PS1 mice. NanoString and pathway analysis of cerebral gene expression revealed dysregulated synaptic mechanisms, with upregulation of Bdnf and downregulation of Slc1a6 in insulin-treated mice, correlating with insulin-induced seizures. In contrast, AAC2 promoted the expression of Syn2 and Syp synaptic genes, preserved brain composition, and improved survival. The combination of AAC2 and insulin counteracted free insulin’s effects. None of the treatments influenced canonical amyloidogenic pathways. This study highlights AAC2’s potential in regulating synaptic gene expression in AD and insulin-induced contexts related to seizure activity. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025